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Abstract

The solution of pipe network problems can usually be obtained by orthogonal mesh and nodal approaches. However, when the size of a
network becomes very large, these methods may not be efficient. In such a case diakoptics may be used. Essentially this approach tears the
given network into two or more smaller subnetworks, thereby reducing the size of the matrices involved and saving computation time. So
far most research in the area of diakoptics has been confined to problems where all the external flows are specified. Although the fictitious
branch method has been incorporated into diakoptics to solve mixed flow- and pressure-specified problems it cannot satisfactorily solve
problems with many pressure specified nodes. In the present work, a method for solving mixed specification problems is developed based
on mesh and nodal diakoptics, incorporating partitioning. The diakoptics technique for the solution of mixed specification problems is

found to be more efficient than conventional partitioning methods. © 1998 Elsevier Science S.A. All rights reserved.
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1. Introduction

Various research [2-5] has shown that most pipe network
problems can be solved by orthogonal mesh and nodal
approaches. However, these approaches have been confined
to problems where all external flows are specified. For mixed
specification problems, two methods were developed,
namely, the fictitious branch method and the partitioning
method. These methods are satisfactory in so far as the size
of the network is not too large. For extremely large-scale
networks, the mesh and nodal methods may not be efficient
due to an increase in computation time. To counter this
problem the technique of diakoptics can be applied [1,6-8].
This approach tears the given network into a number of
smaller subnetworks, which can then be solved more effi-
ciently. Although the fictitious branch method has been
extended to the diakoptics methods, it cannot efficiently
solve problems with many pressure specified nodes. This is
because the introduction of one or two fictitious branches to
each pressure specified node increases the size of the net-
work. The partitioning method on the other hand will not
increase the size of the network but it has not been extended
to the diakoptics methods.
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2. Transformation theory

In the diakoptics approach there are three major reference
frames pertaining to a network: the primitive framework, the
orthogonal framework and the torn framework. The primi-
tive framework treats each branch of a network as discon-
nected, individual units. It is in this framework that the
Eq. (1) expressing the relationship between pressure drop
and flow, known as the governing equation, applies.
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The orthogonal framework represents the network with its
interconnections. In this reference frame open and closed
paths exist for flows and pressure drops. Open path flows are
represented by flows from external sources and are con-
strained in node-to-datum paths, while closed path flows
carry the response due to other sources and are constrained
in meshes. The orthogonal reference frame is the one in
which the solution of pipe network problems is most mean-
ingful. The torn framework shows the network configuration
after it is dissected into several sub-units. It is in this
reference frame that diakoptics may be applied. The rela-
tionship between the different reference frames is described
by transformation tensors.

A tensor is a matrix that carries in its notation a super-
script index, a subscript index, or both, for the purpose of

AP = (1)
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indicating the reference frame under which variables such as
flow are considered, and for indicating the direction of the
transformation (i.e. from primitive to orthogonal, or ortho-
gonal to torn) in the case of transformation tensors. The
following indices are used for the various frameworks: b for
primitive, s for orthogonal, o for open path, c for closed path,
and p for torn framework. Flow and pressure are distin-
guished by a superscript and subscript notation, respec-
tively. For example, the flow vector in the primitive
framework is represented by the tensor J° (contravariant
tensor) while the pressure vector is represented by Vi
(covariant tensor) [4].

3. Diakoptics

In the diakoptics approach the given network is cut and
torn into several subnetworks, which together constitute an
intermediate reference frame known as the torn framework.
The method of tearing varies according to whether mesh
diakoptics or nodal diakoptics is applied.

Although in principle there is no restriction on the
number of subnetworks into which a given network
may be torn, the following derivation of the mesh and
nodal diakoptics method for solving mixed specification
problems is based on tearing the given network into three
subnetworks: subnetworks 1 and 2, and a removed subnet-
work.

3.1. Mesh partitioning diakoptics

This method is so called because the matrices to be
inverted are of the same size (order) of the meshes of the
subnetworks, and its derivation begins with a form that is
similar to the fundamental equation employed for the mesh
partitioning approach [5]. Furthermore, in the solution of
fully flow-specified problems using this approach, the mesh
currents are first calculated, from which the nodal pressures
are then determined.

In mesh diakoptics the tearing is always such that the
removed subnetwork is made up of tree branches and their
nodes, that is, no closed loops are allowed. For example,
consider the network SIMP in Fig. 1. This network can be
cut as in Fig. 2, and the torn configuration represented in
Fig. 3. Note that after the network is torn the links which
were originally connected to the nodes associated with the
removed subnetwork are now connected directly to the
datum node.

The relationships between flow in the orthogonal and torn
frameworks are:

F=cr @
= AP 3)

The relationships between pressure in the orthogonal and
torn frameworks are:
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Fig. 1. Network SIMP.
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Fig. 2. Network SIMP cut by mesh diakoptics.

V. = APV, 4)
Vo =G5V, 5)

The various relevant tensors are first partitioned into
subnetworks 1, 2 and the removed subnetwork, and then
further partitioned into flow-specified and pressure specified
components. Flow-specified components are indicated by
the letter f while pressure-specified components by the letter
p, appearing as the last letter in the subscript of components
Ar, Ar, and Br.
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Fig. 3. Torn configuration of network SIMP cut by mesh diakoptics.
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0 0 Bty Bryp O 0 0 Cr V%“ BripZriBrieljy + BripZriBripli, + BripZriCrii]
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0 0 0 0 0 0 0 UL, Vi 0 0 Ziye O 0 0 0 0 I
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*
an Z1p = Brit Zr1 Bris (15a)
; _

. . , . = B, Z11 B 15b
Using the equation based on Ohm’s law and applying the Zip Tip 11 PTlp (15b)
relevant transformation: Zioe = Bror Zra Bros (15c¢)

b b N
Vy = CyZy,CLJP (12) Z1yy = Brap Zr2 Brap (15d)
Expanding Eq. (12) in matrix form: Zige = Brrt Z1r Brre (15e)
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Ztgp = Brrp Z1R B1rp (15f)

Zi = CnZn Cri + Ziy (15g)

Z{y = CraZm Cry + Z1o (15h)

Rearranging Eq. (14),

rr7 [Zd 0 0 0 0 0 0 0
I, 0 zZz' 0 0 0 0 0 0
I 0 0 Zxp' 0 0 0 0 0
L, 0 0 0 Zyp 0 0 0 0
I 0 0 0 0 Zgl 0 0 0
I, 0 0 0 0 0 Zg 0 0
i 0o 0 o0 0 0 0 z" o
Lol o o 0 0 0 0 0 @ Z5']

(a) From Egs. (17g) and (17h) express Ir, and Vrgs in
terms of i; and i»;

(b) Substitute for /,, and I, from Egs. (17b) and (17d)
into Egs. (17e) and (17f) to get two equations involving
i; and i, which are then solved;

(c) With i; and i, found, determine Vriy and Vrp¢ from
equations Egs. (17a) and (17¢) respectively;

(d) Obtain I, and I, from Egs. (17b) and (17d)
respectively;

(e) Calculate Igp and Vgt from the equations obtained in
step (a).

3.2. Nodal partitioning diakoptics

In nodal diakoptics, the given network is torn in such a way

Vi — szlBTlpll*p + BritZri Crii} ]
Vit — BripZriBriel; + BripZri Crid}
Vi — szzBszlﬁp + BratZr2Crais
| Vi = BropZroBrocli; + BrapZus Croi 6)
Vi — BrreZTR BRp Ry
Virp — BrrpZr Brrelgs
Vi — CriZn Briely; + TNZTIBTlpITp
| Vio— Cr2ZmaBrosly + TUZTZBTZpI;p ]

Transforming both flow and pressure in Eq. (16) from the
torn framework to the ovthogonal framework using
Egs. (2), (5) and (10).

Lt = Z5f (Vo — Bri1Z11Bripliy — BritZ1iCriir)

(17a)
Ly, = Z%fp] (Vrip — BripZriBrielis — BripZri Criit)

(17b)
Ly = Zo! (Vo — BratZ12Brophy — BroiZraCraia)

(17¢)
Ly = Z;EPI(Vsz — BropZraBroshs — BropZraCrol)

(17d)

it = Z;7 " (AusrVire + AvspVirp + Vi — CriZniBrighi
— Cr1ZnBriphp) (17e)

ir = 75 (ALat Vire + AvapVirp + Viz — CroZraBrashy

— Cr2Zr2Brathy) (171)
It = Zigpt [Vire — BrreZrrBrrp (Irp + AtrpCr3it

+ AtrpCraiz)] + ALarit + Avasin (17g)
Irp = Z;E; [Virp — BrrpZtrBrre (IRt + ATr¢Cr3i1

+ A1reCrain)] + ALspit + ALapiz (17h)

Egs. (17a-h), form the set of eight working equations
which are solved simultaneously to obtain the eight
unknown quantities: iy, ip, Iip, lop, Irp, Vrir, Vror and
VrRrs.

The solution strategy for solving the eight equations are
given in the steps below:

that the removed subnetwork consists only of link with no
nodes and no tree branches. For instance, the network SIMP in
Fig. 1 may be cut by nodal diakoptics in the manner shown in
Fig. 4 and the resulting torn configuration is represented in
Fig. 5.Inthederivation of this method, most of the tensors tobe
inverted are of the order of the non-datum nodes of subnet-
works. Moreover, the formulation of this method employs a
fundamental equation essentially similar to that for nodal
partitioning, hence the name nodal partitioning diakoptics.
The relevant tensors are given below:

(At Arip O 0 0 0 0
0 0 Ay Aryp O 0 0
AP = [Auir Awup O 0 U, 0 0
0 0 A Ay O U, O
| Asr Arsp Argr Ay O 0 Urr |
(18)
[Aris At O O 0 0 0 ]
0 0 Ary Aryp O 0 0
Agp = | ALt ALlp 0 0 U, O 0
0 0 Ay Ay O U, 0
0o 0 0 0 0 0 Ux,
(19)
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Fig. 4. Network SIMP cut by nodal diakoptics.
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Fig. 5. Torn configuration of network SIMP cut by nodal diakoptics.
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Using the equation based on Ohm’s law and applying the

Brit Brip, O 0 Crn O Cr3
0 0 Bty Bry O Cr, Cry relevant transformation:
¢=(0 0 0 0 Uy O 0 (20 o D ybb g
0 0 0 0 0 U, 0 JP=ALYPAY,
0 0 0 0 0 0 Uk Expanding Eq. (24a) in matrix form:
[T [ (ArieYmiATie + ALieYiiAvie) Vi + (AtieYriArip +AL1fYL1AL1p)VT1 + AL YLiAL, |
I, (AripYriATis + ALip YiiALie) Viye + (AtipYriATip + AvipYLiAvip) Ve, + AuipYui Vi
b (ArarYT2A1or + Ao Y10AL26) Vigs + (ATar YAty + ALae Vi LzAsz)Vsz + A2V,
Iap = | (ArppYmArar + Ar2p Vs L2AL2f)VT2f + (ArtapY12A12p + AL2p Yi2AL2p) Vi Tp T ArapYiaVi,
li YuViy + YAV + YuiAip Vg,
P YioViy + YA Vi + Yi2Arop Vi,
LR ] i YirViR i
BTlf BTlp 0 0 CTI 0 0 -ITf i -YTlf* 0 0 0
. 0 0 By BTgp 0 Cn 0 ITp 0 Yfflp 0 0
¢=1o 0o 0 0 U, 0 0 5l 1o o vy o
N
L2 i 0 0 0 0
@n i 0o 0 0 0
Urit 0 0 0 0 0 0 i 0 0 0 0
0 Urp 0 0 0 0 0 - R
0 0 Unar 0 0 o 0
AP =ANCh = |0 0 0 Urap 0 0 0
0 0 0 0 Uy 0 0
0 0 0 0 0 Un 0 (mYT]ATIf +MYL1ALH
CrArie CrsAmip CrdArr Crdrpy 0 0 Uir (AratYr2AT2p + Aot Y12A12p
(22) X
[ Uiy 0 0 0 0 0 Apsr | YLiALe Ve + YA Vi
0 Urip 0 0 0 0 ALsp Y12A12 Vg + Y12A12p Vi
0 0 U O 0 0 Arag 0
C,=A5C" = |0 0 0 Urp 0 0 App
0 0 0 0 U, O 0
O 0 0 0 0 U, 0 where
L0 0 0 0 0 0 Uir |
(23) Yiie = AmieYTiArie + AuieYLiALie

(Ar2pYoATar + Al2pYi2AL2r) Vigg + ALapYia Vi,

(=R el el o]

Y
0
0

-(ATIfYT]AT]p + ALieYLiALp VTIP + AvieYu Vi 1

(24a)

(24b)

07 [ Vaur |
0 Vi
0 V%Zf
0 Vi
0 Vi,
0 Vi,

*
A _VLR_

)

Waie + AupYii Vi
Wiap + AL2fY12V],
)

25)

(262)
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Y11, = AtipYTiATip + ALipYLIALIp (26b)
Yio = Ao Y11Aror + Arar Y1 AvLs (26¢)
Y1y, = AropY1iATop + AL2p Y11AL2p (26d)
Ylfl = YLl (266)
Y, =T (261)
Yig = Yir (26g)
Re-arranging Eq. (25),
(Vi1 [Yir O 0 0 0 0 0 7
Vi o ¥l o 0o 0o 0 0
Vs 0 0 Y 0 0 0 0
Vip | =10 0 0 Y 0 0 0
Vi 0o 0 0 0 Yo 0
Via o 0 0 0 0 Y3 o0
LViel Lo o o o o o @ yR'l
(17,7 [ @ne¥riAmg + ALt YLiALp) Vi), + Aicu Vi, 17
I, (AtipYT1ATit + AL YL1AL) Vi + ALip YL V)
I (Am2rY1oAT2p + AL Y12A12p) Vi + A2t Y12 V],
X B | = | (ArapYroAmar + ALsp YioArar) Vige + ALapYiaVis
i YAt Ve + YuiAvp Vi,
& Yi2AorVige + Yi2Aip Vi,
Lir | 0

@n

Transforming both pressure and flow in Eq. (27) from the
torn framework to the orthogonal framework using Egs. (3),
(4) and (22),

Vrie = Y [ —At1£Cr3ig — (ArieYT1AT1p + AL1£Y11ALID)

X Vrip + ALieYe1 Vi) (28a)
Vip= Y;fpl (Ip—A11pCr3ig — (A11p YT1AT1¢ + AL1pYL1ALIF)
X Vi + Avip Yo Vi (28b)
Vo = Yo [lof — AtarCrair — (AtarYroAtap + ArarYioALsp)
X Vrap + ArarY12Vi2) (28¢)
V= Y%z_pl [1p—At2pCrair — (ArapY12Arar + ALopYi2AL2)
X Vror + Ar2p Y12 Vo) (28d)
Vi = Y7 in — YuiAve Vo — YoiAvip Vi) (28e)
Vio = Y5 ' [ia — YioAraVior — YiaArop Vo) (28f)
Vir = YR lir + Crs[Arie Vi + A11pVrip] + CralAtas Vror
+ Arop Vrop) (28¢2)

The set of Egs. (28a), (28b), (28c¢), (28d), (28e), (28f) and
(28g) can now be solved to obtain the seven unknowns: Vg,
Vrag, Tips Iops 11, 12 and ig. The solution strategy are given in
the steps below:

(a) Substitute the expressions for Vri and Vo from
Eqgs. (28a) and (28c) into Eq. (28g) and solve the
resulting equations for ig;

(b) Back-substitute ig into Egs. (28a) and (28c) to get
Vrir and Vpop respectively;

(c) Obtain the nodal flows I;, and I, from Egs. (28b)
and (28d) respectively;

(d) Determine i; and i, from Egs. (28¢) and (28f)
respectively.

4. Results and discussion

Two computer programs MESH and NODAL, based on
mesh and nodal partitioning diakoptics respectively were
written in FORTAN 77. Both programs were applied to each
of the two networks SIMP and COMP (Figs. 1 and 6).
Network SIMP has 9 nodes and 12 branches and is torn
according to Fig. 3 for mesh diakoptics, Fig. 5 for nodal
diakoptics. Network COMP has 22 nodes and 38 branches
and is torn as in Fig. 7 for mesh diakoptics, Fig. 8 for
nodal diakoptics. For each network the tree branches are
indicated by solid lines and the links by dashed lines.
The arrow in each branch represents the assumed direc-
tion of flow. All pipes in each network are assumed to
be smooth with a length of 50 m and a diameter of
0.2 m. There is no active pressure source in each branch.
All nodal pressures are relative to the datum which is
chosen to be the highest numbered node in each case.

The fluid is water with a density of 1000 kg m ™ and a

viscosity of 0.001 kgm™'s".

For each network, analysis began with solving the
problem with all nodal flows specified. These values
were then verified with results obtained using the con-

ventional partitioning approaches and used as a standard

Fig. 6. Network COMP.
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Mesh Diakoptics Cut

Removed

Subnetwork

Subnetwork 2

Fig. 7. Torn configuration of Network COMP cut by mesh diakoptics.

solution against which results from mixed specification
simulations were compared. All simulations were run
on a Pentium 133 computer with Salford FTN77/486
compiler.

Since both programs are run with a relative convergent
tolerance of 0.1 x 1075, the results of simulations are found
to be the same and are given in Tables 1 and 2 for networks
SIMP and Tables 3 and 4 for networks COMP. The com-

Nodal Diakoptics Cut

1

©=®

21

Removed Subnetwork

1)

Subnetwork 1

parison of mixed specification to the number of iteration and
computation time for each network are tabulated in
Tables 5-8. Simulations were also run using a program
PIPE based on mesh partitioning and results tabulated in
Tables 9 and 10. Graphs of computation time per iteration
against number of pressure specified nodes for networks
SIMP and COMP using the various are given in Figs. 9
and 10.

Fig. 8. Torn configuration of Network COMP cut by nodal diakoptics.
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Table 1 Table 4
Nodal flows and pressures for network SIMP Branch flows for network COMP
Node number Flow rate (m®s™ ') Pressure (Nm %) Branch Flow rate Branch Flow rate
| L00x10-2 164.43 number (m3 s’l) number (m3 s’l)
2 0 190.50 1 5.961x107* 20 9.049%x107°
3 2.00x1072 354.20 2 7.891x1073 21 2.386x1072
4 —1.50x1072 —283.48 3 1.214x1072 22 —7.842x1073
5 0 —219.24 4 1.250x1072 23 —1.573x1072
6 —1.50x1072 —277.95 5 —3.607x107* 24 1.725%1072
7 0 —16.242 6 6.966x1073 25 1.213%x1072
8 0 —9.3363 7 1.905x1072 26 1.028x1072
8 1.937x1073 27 1.277%x1072
9 —1.009x1073 28 1.286x1072
10 6.956x1073 29 1.724x1072
Table 2 11 1.906x10> 30 2.757x1072
Branch flows for network SIMP g 7?Zgzx ig:z *;; ;‘ggx ig:z
. X . X
Branch Flow rate Branch Flow rate 14 1.629x 1072 33 —1.166x1072
number m?s™h number m’s™h 15 3.234x107° 34 1.900% 1072
) = 16 1.966x 1072 35 1.489% 1072
1 —9.339% 1073 7 1.295% 1073 7 2 695102 36 1481102
2 7.867>10 8 1541107 18 1.544x 102 37 2.692x102
i *i-éigi :8_3 1(9) *g-gg?i :8_; 19 ~7.768x10~* 38 2.614x1072
5 —4.408x1073 11 —1.036x107>
—2 -3
6 —1.059x10 12 —9.047x10 Table 5
Mixed specification simulations for network SIMP (mesh partitioning
diakoptics)
Table 3 No. of pressure No. of Computation Computation time
Nodal flows and pressures for network COMP specified nodes iterations time (s) per iteration (s)
Node Flow rate (m>s™) Pressure (Nm™~2) 0 22 0.05469 0.002486
> 1 22 0.05469 0.002486
é (1) 0010 ‘3“3)‘7‘;-2(1’ 2 2 0.05469 0002486
: 3 21 0.05469 0.002604
3 0 . 3115.12 4 21 0.05469 0.002604
4 —1.00x10 245124 5 20 0.05469 0.002735
3 0 4205.96 6 21 0.05469 0.002604
s 8 ;‘gjégg 7 19 0.05469 0.002878
: 8 2 - -
8 0 2292.65
9 0 1692.30
10 0 4415.06
11 0 4027.49 Table 6
12 4.00x1072 4769.71 Mixed specification simulations for network SIMP (nodal partitioning
13 0 4415.84 diakoptics)
i;" 8 2333;35 No. of pressure No. of Computation Computation time
16 0 212.842 specified nodes iterations time (s) per iteration (s)
17 0 . 175.932 0 2 0.05469 0.002486
18 —3.00x10"7 —1190.60 I 2 0.05469 0.002486
19 —3.00x107 —335.198 2 2 0.05469 0.002486
20 6.00x10 442033 3 21 0.05469 0.002604
21 0 505.904 4 20 0.05469 0.002735
5 20 0.05469 0.002735
6 19 0.05469 0.002878
7 19 0.05469 0.002878
8 2 - -

Tables 5-8 indicate that the number of iterations
decreased as the number of pressure specified nodes
increased. This is because, as more nodal pressures were
specified, it is more likely that the nodal pressures of ad-
jacent nodes were known. Thus more branch flows could be
calculated directly from the known pressure drops. Con-
sequently fewer iterations were required for convergence.

The least number of iterations is found in the case where all
the nodal pressures were specified, in which all the branch
flows could be computed immediately and convergence was
attained in just two iterations.
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Table 7
Mixed specification simulations for network COMP (mesh partitioning
diakoptics)

Table 9
Mixed specification simulations for network SIMP using program PIPE
(mesh partitioning)

No. of pressure No. of Computation Computation time No. of pressure No. of Computation Computation time
specified nodes iterations time (s) per iteration (s) specified nodes iterations time (s) per iteration (s)

0 24 0.27344 0.01139 0 22 0.10938 0.00497

1 24 0.49609 0.02067 1 22 0.10938 0.00497

2 24 0.54688 0.02279 2 22 0.16406 0.00746

3 23 0.49609 0.02157 3 21 0.10938 0.00521

4 24 0.49219 0.02051 4 21 0.10938 0.00521

5 23 0.49219 0.02140 5 20 0.10938 0.00547

6 24 0.49609 0.02067 6 21 0.10938 0.00521

7 23 0.49609 0.02157 7 19 0.10938 0.00576

8 23 0.49219 0.02140 8 2 0.05469 0.02735

9 22 0.49219 0.02237

10 22 0.49219 0.02237

11 22 0.49609 0.02255

12 21 0.49609 0.02362 applied to the large network COMP. The number of itera-
13 21 0.49219 0.02344 tions were the same for each method (24 iterations) but in
14 21 0.49219 0.02344 terms of computation time per iteration, both mesh and
15 21 049219 0.02344 nodal partitioning diakoptics were much faster than mesh
16 21 0.49609 0.02362 L, R R . .

17 21 0.49609 0.02362 partitioning. Computation time per iteration for mesh par-
18 21 0.44141 0.02102 titioning diakoptics was less than 12% and nodal partition-
19 21 0.49619 0.02344 ing diakoptics about 40% of that for mesh partitioning.
20 20 0.44141 0.02207 Results for mixed specification also indicate that partition-
21 2 0.10938 0.05469

The first row of results in Tables 7, 8 and 10 shows the
number of iteration and computation time for fully flow-
specified problem using mesh partitioning diakoptics, nodal
partitioning diakoptics and mesh partitioning respectively,

Table 8
Mixed specification simulations for network COMP (nodal partitioning
diakoptics)

ing diakoptics is more superior in efficiency than the con-
ventional partitioning methods (See Figs. 9 and 10).

The most time-consuming process in computation is
matrix inversion. The larger the matrix the longer is the
time required for inversion. Since diakoptics tears a given
network into smaller units, the matrices that result have a
smaller dimension than those in the untorn network.

Table 10
Mixed specification simulations for network COMP using program PIPE
(mesh partitioning)

No. of pressure No. of Computation Computation time No. of pressure No. of Computation Computation time
specified nodes iterations time (s) per iteration (s) specified nodes iterations time (s) per iteration (s)
0 24 0.93359 0.03890 0 24 2.30469 0.09603
1 24 0.93359 0.03890 1 24 2.36328 0.09847
2 24 0.87891 0.03662 2 24 2.30859 0.09619
3 24 0.82422 0.03434 3 23 2.25391 0.09800
4 24 0.82422 0.03434 4 24 2.36328 0.09847
5 22 0.71484 0.03249 5 23 2.25000 0.09783
6 22 0.71484 0.03249 6 24 2.36328 0.09470
7 22 0.71484 0.03249 7 23 2.36328 0.10275
8 22 0.71484 0.03249 8 23 2.36328 0.10275
9 22 0.71484 0.03249 9 22 2.25000 0.10227
10 22 0.71484 0.03249 10 22 2.30469 0.10476
11 22 0.65625 0.02983 11 22 2.30469 0.10476
12 22 0.66016 0.03000 12 21 2.25391 0.10733
13 21 0.65625 0.03125 13 21 2.30469 0.10975
14 21 0.71484 0.03404 14 21 2.30859 0.10993
15 21 0.71484 0.03404 15 21 2.41797 0.11514
16 21 0.76953 0.03664 16 21 2.47266 0.11775
17 21 0.76953 0.03664 17 21 2.52734 0.12035
18 19 0.71484 0.03762 18 21 2.58203 0.12295
19 19 0.76953 0.04050 19 21 2.69141 0.12816
20 18 0.71484 0.03971 20 20 2.64063 0.13053
21 2 0.16406 0.08203 21 2 0.38672 0.19336
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Fig. 9. Graph of computation time per iteration against number of pressure specified nodes for network SIMP.

Accordingly their inversion is faster than those in the untorn
network.

Between mesh and nodal partitioning diakoptics the
former seems more efficient than the latter. A closer exam-
ination of the way network COMP is torn reveals that
subnetwork 2 in the torn configuration for nodal diakoptics,

having 30 branches and 18 nodes, is considerably larger than
the subnetworks in the torn configuration for mesh diakop-
tics. Consequently the matrices to be inverted are larger than
those involved in mesh diakoptics. Since there is usually
more than one way of tearing a given network, nodal
partitioning diakoptics can be more efficient if network
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Fig. 10. Graph of computation time per iteration against number of pressure specified nodes for network COMP.
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Table 11
Mixed specification simulations for network COMP (nodal partitioning
diakoptics on new torn configuration as in Fig. 11)

No. of pressure No. of Computation Computation time
specutationified iterations time (s) per iteration (s)
nodes
0 24 0.43750 0.01823
1 24 0.44141 0.01839
2 24 0.44141 0.01839
3 24 0.44141 0.01839
4 24 0.38672 0.01611
5 24 0.44141 0.01839
6 24 0.38672 0.01611
7 24 0.38281 0.01595
8 24 0.38281 0.01595
9 24 0.38672 0.01611
10 23 0.38281 0.01664
11 22 0.38672 0.01758
12 23 0.38672 0.01681
13 22 0.33203 0.01509
14 22 0.32813 0.01491
15 22 0.38281 0.01740
16 22 0.38281 0.01740
17 21 0.32813 0.01563
18 21 0.38672 0.01842
19 19 0.38672 0.02035
20 19 0.38281 0.02015
21 2 0.05469 0.02934

COMP is torn into subnetworks that are comparable in size,
so that the matrices to be inverted would have a smaller
dimension. Table 11 gives the results of mixed specification
simulations using nodal partitioning diakoptics applied to
network COMP, but with the network being torn as in
Fig. 11 into two subnetworks of comparable size. Fig. 12
is a plot of computation time per iteration against number of

Nodal Diakoptics Cut
(New Torn Configuration)

-~ 37

Subnetwork 1

pressure-specified nodes using mesh partitioning diakoptics
applied to the original torn configuration as in Fig. 7, nodal
partitioning diakoptics applied to the original torn config-
uration as in Fig. 8 and partitioning diakoptics applied to the
new torn configuration as in Fig. 11. These results show that
nodal partitioning diakoptics applied to the new torn con-
figuration gives the fastest computation time. Therefore,
whether mesh or nodal partitioning diakoptics is more
efficient depends on how the network is torn for each
method. Comparing the convergence time required for
diakoptics in the present work with that in the literature
[8], it appears that the computation time is much shorter in
the present work. However, convergence time in this
instance does not form a valid basis for comparison. This
is because in the program in Ref. [8] direct access file was
used to store information pertaining to each subnetwork. At
any time, only the required subnetwork’s information was
read. Thus the program involved a lot of input/output, which
took up a lot of time. With improved technology, however,
storage does not pose a great problem nowadays. Therefore,
the use of the direct access file is discarded in the present
study.

5. Conclusion

Partitioning diakoptics has been found to be more effi-
cient than conventional partitioning methods in solving
mixed specifications problems in fluid pipe networks, by
reducing computation time significantly especially when the
given network is very large. This is due to tearing of the
parent network into smaller subnetworks in the diakoptics
approach, resulting in matrices of smaller dimension which
can be more easily inverted. Whether mesh or nodal parti-

/

Removed

Subnetwork

Subnetwork 2

Fig. 11. New torn configuration of Network COMP cut by nodal diakoptics.



34

C.S. Lim, H.C. Ti/Chemical Engineering Journal 71 (1998) 23-35

12

14

0.1
® —— mesh part. diakoptics
00o| ™ nodal part. diakoptics [ i R
: A --- nodal part. diakoptics
(new torn configuration) n
~ 0.08 : : T
NS /
g {
.8 0.07 [ f
<] |
5 |
= 0.06 ” ..........
8 !
Iy | !
E 0 05 .............................. “'l /
-5 |
=
© 0.04 gy:::: =g
‘3 & l\-\'___‘ /.___.__—I’ H
5 B B R W -
g 0‘03 \.,.._.-r.f ...................... N
Q ® L . /
O 0.02 2 X x '/H .............................. SR R RS F
z/ HEER ey SR S R A-ko BT T #
0.019
0'0 H H H
2 4 6 8 10 16 18 20 22 24

No. of pressure-specifed nodes

Fig. 12. Graph of computation time per iteration against number of pressure specified nodes for network COMP.

tioning diakoptics is more efficient depends on how the
network is torn for each method.

6. List of Notation

A

< <a ©

N

Branch-node incidence matrix of a network;
Transformation tensor used in nodal partitioning
diakoptics
Node-to-datum path matrix.
Branch-mesh incidence matrix of a network;
Transformation tensor used in mesh partitioning
diakoptics
Diameter of a pipe
Contravariant tensor for flow due to external
input—output on a branch of path; Nodal flow
Contravariant tensor for flow due to other causes
on a branch or path; Mesh flow
Contravariant tensor for total flow on a branch
or path, in primitive framework, J=I+i
Length of pipe
Pressure drop across a pipe, which is equivalent
to Vin the matrix analysis
Volumetric flow rate through a pipe, which is
equivalent to J in the matrix analysis
Identity matrix
Covariant tensor for total pressure, in primitive
framework
Contravariant tensor for admittance, used in the
nodal approach
Covariant tensor for impedance, used in the
mesh approach

6.1. Greek symbols

™

P
bt

Ratio of circumference to diameter of a circle

Density of fluid
Fanning friction factor

6.2. Index nomenclature

b

Index used in tensor form, indicating the tensor
to be in primitive framework
Index used in tensor form, indicating the tensor
to be in closed path framework
Index used for matrix form, indicating that the
matrix involves the link branches
Index used in tensor form, indicating the tensor
to be in open framework
Index used in tensor form, indicating the tensor
to be in torn framework
Index used in matrix form, indicating that the
matrix pertains to the removed subnetwork
Index used in tensor form, indicating the tensor
to be in orthogonal framework
Index used in matrix form, indicating that the
matrix involves the tree branches
Index used in matrix form, indicating that the
matrix pertains to subnetwork 1 only
Index used in matrix form, indicating that the
matrix pertains to subnetwork 2 only
Index used in matrix form, indicating that the
matrix pertains to subnetwork 1 and the removed

subnetwork
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Index used in matrix form, indicating that the
matrix pertains to subnetwork 2 and the removed
subnetwork

Index used in matrix form, indicating that the
matrix pertains to subnetwork 1 and the in the
flow-specified framework

Index used in matrix form, indicating that the
matrix pertains to subnetwork 1 and in the
pressure-specified framework

Index used in matrix form, indicating that the
matrix pertains to subnetwork 2 and in the flow-
specified framework

Index used in matrix form, indicating that the
matrix pertains to subnetwork 2 and in the
pressure-specified framework

Index used in matrix form, indicating that the
matrix pertains to the removed subnetwork 1 and
in the flow-specified framework

Index used in matrix form, indicating that the
matrix pertains to the removed subnetwork and
in the pressure-specified framework

Index used in matrix form, indicating that the
matrix pertains to the torn framework

6.3. Matrix notation

M Transpose of matrix M
M! Inverse of matrix M
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