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Abstract

The solution of pipe network problems can usually be obtained by orthogonal mesh and nodal approaches. However, when the size of a

network becomes very large, these methods may not be ef®cient. In such a case diakoptics may be used. Essentially this approach tears the

given network into two or more smaller subnetworks, thereby reducing the size of the matrices involved and saving computation time. So

far most research in the area of diakoptics has been con®ned to problems where all the external ¯ows are speci®ed. Although the ®ctitious

branch method has been incorporated into diakoptics to solve mixed ¯ow- and pressure-speci®ed problems it cannot satisfactorily solve

problems with many pressure speci®ed nodes. In the present work, a method for solving mixed speci®cation problems is developed based

on mesh and nodal diakoptics, incorporating partitioning. The diakoptics technique for the solution of mixed speci®cation problems is

found to be more ef®cient than conventional partitioning methods. # 1998 Elsevier Science S.A. All rights reserved.
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1. Introduction

Various research [2±5] has shown that most pipe network

problems can be solved by orthogonal mesh and nodal

approaches. However, these approaches have been con®ned

to problems where all external ¯ows are speci®ed. For mixed

speci®cation problems, two methods were developed,

namely, the ®ctitious branch method and the partitioning

method. These methods are satisfactory in so far as the size

of the network is not too large. For extremely large-scale

networks, the mesh and nodal methods may not be ef®cient

due to an increase in computation time. To counter this

problem the technique of diakoptics can be applied [1,6±8].

This approach tears the given network into a number of

smaller subnetworks, which can then be solved more ef®-

ciently. Although the ®ctitious branch method has been

extended to the diakoptics methods, it cannot ef®ciently

solve problems with many pressure speci®ed nodes. This is

because the introduction of one or two ®ctitious branches to

each pressure speci®ed node increases the size of the net-

work. The partitioning method on the other hand will not

increase the size of the network but it has not been extended

to the diakoptics methods.

2. Transformation theory

In the diakoptics approach there are three major reference

frames pertaining to a network: the primitive framework, the

orthogonal framework and the torn framework. The primi-

tive framework treats each branch of a network as discon-

nected, individual units. It is in this framework that the

Eq. (1) expressing the relationship between pressure drop

and ¯ow, known as the governing equation, applies.

�P � 32��f LQ2

�2D5
(1)

The orthogonal framework represents the network with its

interconnections. In this reference frame open and closed

paths exist for ¯ows and pressure drops. Open path ¯ows are

represented by ¯ows from external sources and are con-

strained in node-to-datum paths, while closed path ¯ows

carry the response due to other sources and are constrained

in meshes. The orthogonal reference frame is the one in

which the solution of pipe network problems is most mean-

ingful. The torn framework shows the network con®guration

after it is dissected into several sub-units. It is in this

reference frame that diakoptics may be applied. The rela-

tionship between the different reference frames is described

by transformation tensors.

A tensor is a matrix that carries in its notation a super-

script index, a subscript index, or both, for the purpose of
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indicating the reference frame under which variables such as

¯ow are considered, and for indicating the direction of the

transformation (i.e. from primitive to orthogonal, or ortho-

gonal to torn) in the case of transformation tensors. The

following indices are used for the various frameworks: b for

primitive, s for orthogonal, o for open path, c for closed path,

and p for torn framework. Flow and pressure are distin-

guished by a superscript and subscript notation, respec-

tively. For example, the ¯ow vector in the primitive

framework is represented by the tensor Jb (contravariant

tensor) while the pressure vector is represented by Vb

(covariant tensor) [4].

3. Diakoptics

In the diakoptics approach the given network is cut and

torn into several subnetworks, which together constitute an

intermediate reference frame known as the torn framework.

The method of tearing varies according to whether mesh

diakoptics or nodal diakoptics is applied.

Although in principle there is no restriction on the

number of subnetworks into which a given network

may be torn, the following derivation of the mesh and

nodal diakoptics method for solving mixed speci®cation

problems is based on tearing the given network into three

subnetworks: subnetworks 1 and 2, and a removed subnet-

work.

3.1. Mesh partitioning diakoptics

This method is so called because the matrices to be

inverted are of the same size (order) of the meshes of the

subnetworks, and its derivation begins with a form that is

similar to the fundamental equation employed for the mesh

partitioning approach [5]. Furthermore, in the solution of

fully ¯ow-speci®ed problems using this approach, the mesh

currents are ®rst calculated, from which the nodal pressures

are then determined.

In mesh diakoptics the tearing is always such that the

removed subnetwork is made up of tree branches and their

nodes, that is, no closed loops are allowed. For example,

consider the network SIMP in Fig. 1. This network can be

cut as in Fig. 2, and the torn con®guration represented in

Fig. 3. Note that after the network is torn the links which

were originally connected to the nodes associated with the

removed subnetwork are now connected directly to the

datum node.

The relationships between ¯ow in the orthogonal and torn

frameworks are:

Js � Cs
:p Jp (2)

Jp � Ap
:s Js (3)

The relationships between pressure in the orthogonal and

torn frameworks are:

Vs � A:p
s Vp (4)

Vp � C:s
p Vs (5)

The various relevant tensors are ®rst partitioned into

subnetworks 1, 2 and the removed subnetwork, and then

further partitioned into ¯ow-speci®ed and pressure speci®ed

components. Flow-speci®ed components are indicated by

the letter f while pressure-speci®ed components by the letter

p, appearing as the last letter in the subscript of components

AT, AL and BT.

A:s
b �

AT1f AT1p 0 0 0 0 0 0

0 0 AT2f AT2p 0 0 0 0

0 0 0 0 ATRf ATRp 0 0

AL1f AL1p 0 0 AL3f AL3p UL1 0

0 0 AL2f AL2p AL4f AL4p 0 UL2

266664
377775

(6)

A
:p
b �

AT1f AT1p 0 0 0 0 0 0

0 0 AT2f AT2p 0 0 0 0

0 0 0 0 ATRf ATRp 0 0

AL1f AL1p 0 0 0 0 UL1 0

0 0 AL2f AL2p 0 0 0 UL2

266664
377775

(7)

Fig. 1. Network SIMP.

Fig. 2. Network SIMP cut by mesh diakoptics.
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Cb
:s �

BT1f BT1p 0 0 0 0 CT1 0

0 0 BT2f BT2p 0 0 0 CT2

0 0 0 0 BTRf BTRp CT3 CT4

0 0 0 0 0 0 UL1 0

0 0 0 0 0 0 0 UL2

266664
377775

(8)

Cb
:p �

BT1f BT1p 0 0 0 0 CT1 0

0 0 BT2f BT2p 0 0 0 CT2

0 0 0 0 BTRf BTRp 0 0

0 0 0 0 0 0 UL1 0

0 0 0 0 0 0 0 UL2

266664
377775

(9)

Cs
:p � As

:b Cb
:p �

UT1f 0 0 0 0 0 0 0

0 UT1p 0 0 0 0 0 0

0 0 UT2f 0 0 0 0 0

0 0 0 UT2p 0 0 0 0

0 0 0 0 UTRf 0 AL3f AL4f

0 0 0 0 0 UTRp AL3p AL4p

0 0 0 0 0 0 UL1 0

0 0 0 0 0 0 0 UL2

266666666664

377777777775
(10)

Ap
:s � Ap

:b Cb
:s �

UT1f 0 0 0 0 0 0 0

0 UT1p 0 0 0 0 0 0

0 0 UT2f 0 0 0 0 0

0 0 0 UT2p 0 0 0 0

0 0 0 0 UTRf 0 ATRf CT3 AL4fCT4

0 0 0 0 0 UTRp AL3pCT3 AL4pCT4

0 0 0 0 0 0 UL1 0

0 0 0 0 0 0 0 UL2

266666666664

377777777775
(11)

Using the equation based on Ohm's law and applying the

relevant transformation:

Vp � C:b
p ZbbCb

:pJp (12)

Expanding Eq. (12) in matrix form:

V�T1f

V�T1p

V�T2f

V�T2p

V�TRf

V�TRp

V�L1

V�L2

266666666664

377777777775
�

BT1fZT1BT1fI
�
1f � BT1fZT1BT1pI�1p � BT1fZT1CT1i�1

BT1pZT1BT1fI
�
1f � BT1pZT1BT1pI�1p � BT1pZT1CT1i�1

BT2fZT2BT2fI
�
2f � BT2fZT2BT2pI�2p � BT2fZT2CT2i�2

BT2pZT2BT2fI
�
2f � BT2pZT2BT2pI�2p � BT2pZT2CT2i�2

BTRfZTRBTRfI
�
Rf � BTRfZTRBTRpI�Rp

BTRpZTRBTRfI
�
Rf � BTRpZTRBTRpI�Rp

�CT1ZT1CT1 � ZL1�i�1 � CT1ZT1BT1fI
�
1f � CT1ZT1BT1pI�1p

�CT2ZT2CT2 � ZL2�i�2 � CT2ZT2BT2fI
�
2f � CT2ZT2BT2pI�2p

26666666666664

37777777777775
(13)

V�T1f

V�T1p

V�T2f

V�T2p

V�TRf

V�TRp

V�L1

V�L2

266666666666664

377777777777775
�

Z�T1f 0 0 0 0 0 0 0

0 Z�T1p 0 0 0 0 0 0

0 0 Z�T2f 0 0 0 0 0

0 0 0 Z�T2p 0 0 0 0

0 0 0 0 Z�TRf 0 0 0

0 0 0 0 0 Z�TRp 0 0

0 0 0 0 0 0 Z�L1 0

0 0 0 0 0 0 0 Z�L2

266666666666664

377777777777775

I�1f

I�1p

I�2f

I�2p

I�Rf

I�Rp

i�1
i�2

266666666666664

377777777777775

�

BT1fZT1BT1pI�1p � BT1fZT1CT1i�1
BT1pZT1BT1fI

�
1f � BT1pZT1CT1i�1

BT2fZT2BT2pI�2p � BT2fZT2CT2i�2
BT2pZT2BT2fI

�
2f � BT2pZT2CT2i�2

BTRfZTRBTRpI�Rp

BTRpZTRBTRfI
�
Rf

CT1ZT1BT1fI
�
1f � CT1ZT1BT1pI�1p

CT2ZT2BT2fI
�
2f � CT2ZT2BT2pI�2p

26666666666666664

37777777777777775
(14)

where

Z�T1f � BT1f ZT1 BT1f (15a)

Z�T1p � BT1p ZT1 BT1p (15b)

Z�T2f � BT2f ZT2 BT2f (15c)

Z�T2p � BT2p ZT2 BT2p (15d)

Z�TRf � BTRf ZTR BTRf (15e)

Fig. 3. Torn configuration of network SIMP cut by mesh diakoptics.
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Z�TRp � BTRp ZTR BTRp (15f)

Z�L1 � CT1 ZT1 CT1 � ZL1 (15g)

Z�L2 � CT2 ZT2 CT2 � ZL2 (15h)

Rearranging Eq. (14),

I�1f

I�1p

I�2f

I�2p

I�Rf

I�Rp

i�1
i�2

266666666666664

377777777777775
�

Z�ÿ1
T1f 0 0 0 0 0 0 0

0 Z�ÿ1
T1p 0 0 0 0 0 0

0 0 Z�ÿ1
T2f 0 0 0 0 0

0 0 0 Z�ÿ1
T2p 0 0 0 0

0 0 0 0 Z�ÿ1
TRf 0 0 0

0 0 0 0 0 Z�ÿ1
TRp 0 0

0 0 0 0 0 0 Z�ÿ1
L1 0

0 0 0 0 0 0 0 Z�ÿ1
L2

2666666666666664

3777777777777775

�

V�T1f ÿ BT1fZT1BT1pI�1p � BT1fZT1CT1i�1
V�T1p ÿ BT1pZT1BT1fI

�
1f � BT1pZT1CT1i�1

V�T2f ÿ BT2fZT2BT2pI�2p � BT2fZT2CT2i�2
V�T2p ÿ BT2pZT2BT2fI

�
2f � BT2pZT2CT2i�2

V�Trf ÿ BTRfZTRBTRpI�Rp

V�TRp ÿ BTRpZTRBTRfI
�
Rf

V�L1 ÿ CT1ZT1BT1fI
�
1f � CT1ZT1BT1pI�1p

V�L2 ÿ CT2ZT2BT2fI
�
2f � CT2ZT2BT2pI�2p

266666666666666664

377777777777777775
(16)

Transforming both ¯ow and pressure in Eq. (16) from the

torn framework to the ovthogonal framework using

Eqs. (2), (5) and (10).

I1f � Z�ÿ1
T1f �VT1f ÿ BT1fZT1BT1pI1p ÿ BT1fZT1CT1i1�

(17a)

I1p � Z�ÿ1
T1p �VT1p ÿ BT1pZT1BT1fI1f ÿ BT1pZT1CT1i1�

(17b)

I2f � Z�ÿ1
T2f �VT2f ÿ BT2fZT2BT2pI2p ÿ BT2fZT2CT2i2�

(17c)

I2p � Z�ÿ1
T2p �VT2p ÿ BT2pZT2BT2fI2f ÿ BT2pZT2CT2i2�

(17d)

i1 � Z�ÿ1
L1 �AL3fVTRf � AL3pVTRp � VL1 ÿ CT1ZT1BT1fI1f

ÿ CT1ZT1BT1pI1p� (17e)

i2 � Z�ÿ1
L2 �AL4fVTRf � AL4pVTRp � VL2 ÿ CT2ZT2BT2fI2f

ÿ CT2ZT2BT2fI2p� (17f)

IRf � Z�ÿ1
TRf �VTRf ÿ BTRfZTRBTRp�IRp � ATRpCT3i1

� ATRpCT4i2�� � AL3f i1 � AL4f i2 (17g)

IRp � Z�ÿ1
TRp �VTRp ÿ BTRpZTRBTRf�IRf � ATRfCT3i1

� ATRfCT4i2�� � AL3pi1 � AL4pi2 (17h)

Eqs. (17a±h), form the set of eight working equations

which are solved simultaneously to obtain the eight

unknown quantities: i1, i2, I1p, I2p, IRp, VT1f, VT2f and

VTRf.

The solution strategy for solving the eight equations are

given in the steps below:

(a) From Eqs. (17g) and (17h) express IRp and VTRf in

terms of i1 and i2;

(b) Substitute for I1p and I2p from Eqs. (17b) and (17d)

into Eqs. (17e) and (17f) to get two equations involving

i1 and i2 which are then solved;

(c) With i1 and i2 found, determine VT1f and VT2f from

equations Eqs. (17a) and (17c) respectively;

(d) Obtain I1p and I2p from Eqs. (17b) and (17d)

respectively;

(e) Calculate IRp and VTRf from the equations obtained in

step (a).

3.2. Nodal partitioning diakoptics

In nodal diakoptics, the given network is torn in such a way

that the removed subnetwork consists only of link with no

nodes and no tree branches. For instance, the network SIMP in

Fig. 1 may be cut by nodal diakoptics in the manner shown in

Fig. 4 and the resulting torn con®guration is represented in

Fig. 5.Inthederivationofthismethod,mostofthetensorstobe

inverted are of the order of the non-datum nodes of subnet-

works. Moreover, the formulation of this method employs a

fundamental equation essentially similar to that for nodal

partitioning, hence the name nodal partitioning diakoptics.

The relevant tensors are given below:

A:s
b �

AT1f AT1p 0 0 0 0 0

0 0 AT2f AT2p 0 0 0

AL1f AL1p 0 0 UL1 0 0

0 0 AL2f AL2p 0 UL2 0

AL3f AL3p AL4f AL4p 0 0 ULR

266664
377775

(18)

A:p
b �

AT1f AT1p 0 0 0 0 0

0 0 AT2f AT2p 0 0 0

AL1f AL1p 0 0 UL1 0 0

0 0 AL2f AL2p 0 UL2 0

0 0 0 0 0 0 ULR

266664
377775
(19)

Fig. 4. Network SIMP cut by nodal diakoptics.
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Cb
:s �

BT1f BT1p 0 0 CT1 0 CT3

0 0 BT2f BT2p 0 CT2 CT4

0 0 0 0 UL1 0 0

0 0 0 0 0 UL2 0

0 0 0 0 0 0 ULR

266664
377775 (20)

Cb
:p �

BT1f BT1p 0 0 CT1 0 0

0 0 BT2f BT2p 0 CT2 0

0 0 0 0 UL1 0 0

0 0 0 0 0 UL2 0

0 0 0 0 0 0 UL2

266664
377775

(21)

Ap
:s � Ap

:b Cb
:s �

UT1f 0 0 0 0 0 0

0 UT1p 0 0 0 0 0

0 0 UT2f 0 0 0 0

0 0 0 UT2p 0 0 0

0 0 0 0 UL1 0 0

0 0 0 0 0 UL2 0

CT3AT1f CT3AT1P CT4AT2F CT4AT2p 0 0 ULR

2666666664

3777777775
(22)

Cs
:p � As

:b Cb
:p �

UT1f 0 0 0 0 0 AL3f

0 UT1p 0 0 0 0 AL3P

0 0 UT2f 0 0 0 AL4f

0 0 0 UT2p 0 0 AL4P

0 0 0 0 UL1 0 0

0 0 0 0 0 UL2 0

0 0 0 0 0 0 ULR

2666666664

3777777775
(23)

Using the equation based on Ohm's law and applying the

relevant transformation:

Jp � Ap
:bYbbA:p

b Vp (24a)

Expanding Eq. (24a) in matrix form:

I�1f

I�1p

I�2f

I�2p

i�1
i�2
i�R

2666666666664

3777777777775
�

YT1f� 0 0 0 0 0 0

0 Y�T1p 0 0 0 0 0

0 0 Y�T2f 0 0 0 0

0 0 0 Y�T2p 0 0 0

0 0 0 0 Y�L1 0 0

0 0 0 0 0 Y�L2 0

0 0 0 0 0 0 Y�LR

2666666666664

3777777777775

V�T1f

V�T1p

V�T2f

V�T2p

V�L1

V�L2

V�LR

2666666666664

3777777777775

�

�AT1fYT1AT1p � AL1fYL1AL1p�V�T1p � AL1fYL1V�L1

�AT1pYT1AT1f � AL1pYL1AL1f�V�T1f � AL1pYL1V�L1

�AT2fYT2AT2p � AL2fYL2AL2p�V�T2p � AL2fYL2V�L2

�AT2pYT2AT2f � AL2pYL2AL2f�V�T2f � AL2pYL2V�L2

YL1AL1fV
�
T1f � YL1AL1pVT1p�

YL2AL2fV
�
T2f � YL2AL2pV�T2p

0

26666666664

37777777775
(25)

where

Y�T1f � AT1fYT1AT1f � AL1fYL1AL1f (26a)

Fig. 5. Torn configuration of network SIMP cut by nodal diakoptics.

I�1f

I�1p

I�2f

I�2p

i�1
i�2
i�R

2666666664

3777777775
�

�AT1fYT1AT1f � AL1fYL1AL1f�V�T1f � �AT1fYT1AT1p � AL1fYL1AL1p�V�T1p � AL1fYL1A�L1

�AT1pYT1AT1f � AL1pYL1AL1f�V�T1f � �AT1pYT1AT1p � AL1pYL1AL1p�V�T1p � AL1pYL1V�L1

�AT2fYT2AT2f � AL2fYL2AL2f�V�T2f � �AT2fYT2AT2p � AL2fYL2AL2p�V�T2p � AL2fYL2V�L2

�AT2pYT2AT2f � AL2pYL2AL2f�V�T2f � �AT2pYT2AT2p � AL2pYL2AL2p�V�T2p � AL2pYL2V�L2

YL1V�L1 � YL1AL1fV
�
T1f � YL1AL1pV�T1p

YL2V�L2 � YL2AL2fV
�
T2f � YL2AL2pV�T2p

YLRV�LR

26666666664

37777777775
(24b)
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Y�T1p � AT1pYT1AT1p � AL1pYL1AL1p (26b)

Y�T2f � AT2fYT1AT2f � AL2fYL1AL2f (26c)

Y�T2p � AT2pYT1AT2p � AL2pYL1AL2p (26d)

Y�L1 � YL1 (26e)

Y�L2 � YL2 (26f)

Y�LR � YLR (26g)

Re-arranging Eq. (25),

V�T1f

V�T1p

V�T2f

V�T2p

V�L1

V�L2

V�LR

2666666666664

3777777777775
�

Y�ÿ1
T1f 0 0 0 0 0 0

0 Y�ÿ1
T1p 0 0 0 0 0

0 0 Y�ÿ1
T2f 0 0 0 0

0 0 0 Y�ÿ1
T2p 0 0 0

0 0 0 0 Y�ÿ1
L1 0 0

0 0 0 0 0 Y�ÿ1
L2 0

0 0 0 0 0 0 Y�ÿ1
LR

2666666666664

3777777777775

�

I�1f

I�1p

I�2f

I�2p

i�1
i�2
i�R

2666666666664

3777777777775
ÿ

�AT1fYT1AT1p � AL1fYL1AL1p�V�T1p � AL1fYL1V�L1

�AT1pYT1AT1f � AL1pYL1AL1f�V�T1f � AL1pYL1V�L1

�AT2fYT2AT2p � AL2fYL2AL2p�V�T2p � AL2fYL2V�L2

�AT2pYT2AT2f � AL2pYL2AL2f�V�T2f � AL2pYL2V�L2

YL1AL1fV
�
T1f � YL1AL1pV�T1p

YL2AL2fV
�
T2f � YL2AL2pV�T2p

0

26666666666664

37777777777775

26666666666664

37777777777775
(27)

Transforming both pressure and ¯ow in Eq. (27) from the

torn framework to the orthogonal framework using Eqs. (3),

(4) and (22),

VT1f � Y�ÿ1
T1f �I1fÿAT1fCT3iRÿ�AT1fYT1AT1p � AL1fYL1AL1p�
� VT1p � AL1fYL1VL1� (28a)

VT1p�Y�ÿ1
T1p �I1pÿAT1pCT3iRÿ�AT1pYT1AT1f � AL1pYL1AL1f�
� VT1f � AL1pYL1VL1� (28b)

VT2f�Y�ÿ1
T2f �I2fÿAT2fCT4iR ÿ �AT2fYT2AT2p � AL2fYL2AL2p�
� VT2p � AL2fYL2VL2� (28c)

VT2p�Y�ÿ1
T2p �I2pÿAT2pCT4iR ÿ �AT2pYT2AT2f � AL2pYL2AL2f�
� VT2f � AL2pYL2VL2� (28d)

VL1 � Y�ÿ1
L1 �i1 ÿ YL1AL1fVT1f ÿ YL1AL1pVT1p� (28e)

VL2 � Y�ÿ1
L2 �i2 ÿ YL2AL2fVT2f ÿ YL2AL2pVT2p� (28f)

VLR � Y�ÿ1
LR iR � CT3�AT1fVT1f � AT1pVT1p� � CT4�AT2fVT2f

� AT2pVT2p� (28g)

The set of Eqs. (28a), (28b), (28c), (28d), (28e), (28f) and

(28g) can now be solved to obtain the seven unknowns: VT1f,

VT2f, I1p, I2p, i1, i2 and iR. The solution strategy are given in

the steps below:

(a) Substitute the expressions for VT1f and VT2f from

Eqs. (28a) and (28c) into Eq. (28g) and solve the

resulting equations for iR;

(b) Back-substitute iR into Eqs. (28a) and (28c) to get

VT1f and VT2f respectively;

(c) Obtain the nodal flows I1p and I2p from Eqs. (28b)

and (28d) respectively;

(d) Determine i1 and i2 from Eqs. (28e) and (28f)

respectively.

4. Results and discussion

Two computer programs MESH and NODAL, based on

mesh and nodal partitioning diakoptics respectively were

written in FORTAN 77. Both programs were applied to each

of the two networks SIMP and COMP (Figs. 1 and 6).

Network SIMP has 9 nodes and 12 branches and is torn

according to Fig. 3 for mesh diakoptics, Fig. 5 for nodal

diakoptics. Network COMP has 22 nodes and 38 branches

and is torn as in Fig. 7 for mesh diakoptics, Fig. 8 for

nodal diakoptics. For each network the tree branches are

indicated by solid lines and the links by dashed lines.

The arrow in each branch represents the assumed direc-

tion of ¯ow. All pipes in each network are assumed to

be smooth with a length of 50 m and a diameter of

0.2 m. There is no active pressure source in each branch.

All nodal pressures are relative to the datum which is

chosen to be the highest numbered node in each case.

The ¯uid is water with a density of 1000 kg mÿ3 and a

viscosity of 0.001 kg mÿ1 sÿ1.

For each network, analysis began with solving the

problem with all nodal ¯ows speci®ed. These values

were then veri®ed with results obtained using the con-

ventional partitioning approaches and used as a standard

Fig. 6. Network COMP.
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solution against which results from mixed speci®cation

simulations were compared. All simulations were run

on a Pentium 133 computer with Salford FTN77/486

compiler.

Since both programs are run with a relative convergent

tolerance of 0.1�10ÿ5, the results of simulations are found

to be the same and are given in Tables 1 and 2 for networks

SIMP and Tables 3 and 4 for networks COMP. The com-

parison of mixed speci®cation to the number of iteration and

computation time for each network are tabulated in

Tables 5±8. Simulations were also run using a program

PIPE based on mesh partitioning and results tabulated in

Tables 9 and 10. Graphs of computation time per iteration

against number of pressure speci®ed nodes for networks

SIMP and COMP using the various are given in Figs. 9

and 10.

Fig. 7. Torn configuration of Network COMP cut by mesh diakoptics.

Fig. 8. Torn configuration of Network COMP cut by nodal diakoptics.
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Tables 5±8 indicate that the number of iterations

decreased as the number of pressure speci®ed nodes

increased. This is because, as more nodal pressures were

speci®ed, it is more likely that the nodal pressures of ad-

jacent nodes were known. Thus more branch ¯ows could be

calculated directly from the known pressure drops. Con-

sequently fewer iterations were required for convergence.

The least number of iterations is found in the case where all

the nodal pressures were speci®ed, in which all the branch

¯ows could be computed immediately and convergence was

attained in just two iterations.

Table 1

Nodal flows and pressures for network SIMP

Node number Flow rate (m3 sÿ1) Pressure (Nmÿ2)

1 1.00�10ÿ2 194.43

2 0 190.50

3 2.00�10ÿ2 354.20

4 ÿ1.50�10ÿ2 ÿ283.48

5 0 ÿ219.24

6 ÿ1.50�10ÿ2 ÿ277.95

7 0 ÿ16.242

8 0 ÿ9.3363

Table 2

Branch flows for network SIMP

Branch

number

Flow rate

(m3 sÿ1)

Branch

number

Flow rate

(m3 sÿ1)

1 ÿ9.339�10ÿ4 7 1.295�10ÿ3

2 7.867�10ÿ3 8 1.541�10ÿ3

3 ÿ1.213�10ÿ2 9 ÿ9.066�10ÿ3

4 4.639�10ÿ3 10 ÿ8.801�10ÿ3

5 ÿ4.408�10ÿ3 11 ÿ1.036�10ÿ2

6 ÿ1.059�10ÿ2 12 ÿ9.047�10ÿ3

Table 3

Nodal flows and pressures for network COMP

Node Flow rate (m3 sÿ1) Pressure (Nmÿ2)

1 1.00�10ÿ2 4043.20

2 0 3378.61

3 0 3115.12

4 ÿ1.00�10ÿ2 2451.24

5 0 4205.96

6 0 4041.38

7 0 3246.69

8 0 2292.65

9 0 1692.30

10 0 4415.06

11 0 4027.49

12 4.00�10ÿ2 4769.71

13 0 4415.84

14 0 2483.12

15 0 209.975

16 0 212.842

17 0 175.932

18 ÿ5.00�10ÿ2 ÿ1190.60

19 ÿ5.00�10ÿ2 ÿ335.198

20 6.00�10ÿ2 4420.33

21 0 505.904

Table 5

Mixed specification simulations for network SIMP (mesh partitioning

diakoptics)

No. of pressure

specified nodes

No. of

iterations

Computation

time (s)

Computation time

per iteration (s)

0 22 0.05469 0.002486

1 22 0.05469 0.002486

2 22 0.05469 0.002486

3 21 0.05469 0.002604

4 21 0.05469 0.002604

5 20 0.05469 0.002735

6 21 0.05469 0.002604

7 19 0.05469 0.002878

8 2 ± ±

Table 6

Mixed specification simulations for network SIMP (nodal partitioning

diakoptics)

No. of pressure

specified nodes

No. of

iterations

Computation

time (s)

Computation time

per iteration (s)

0 22 0.05469 0.002486

1 22 0.05469 0.002486

2 22 0.05469 0.002486

3 21 0.05469 0.002604

4 20 0.05469 0.002735

5 20 0.05469 0.002735

6 19 0.05469 0.002878

7 19 0.05469 0.002878

8 2 ± ±

Table 4

Branch flows for network COMP

Branch

number

Flow rate

(m3 sÿ1)

Branch

number

Flow rate

(m3 sÿ1)

1 5.961�10ÿ4 20 9.049�10ÿ3

2 7.891�10ÿ3 21 2.386�10ÿ2

3 1.214�10ÿ2 22 ÿ7.842�10ÿ3

4 1.250�10ÿ2 23 ÿ1.573�10ÿ2

5 ÿ3.607�10ÿ4 24 1.725�10ÿ2

6 6.966�10ÿ3 25 1.213�10ÿ2

7 1.905�10ÿ2 26 1.028�10ÿ2

8 1.937�10ÿ3 27 1.277�10ÿ2

9 ÿ1.009�10ÿ3 28 1.286�10ÿ2

10 6.956�10ÿ3 29 1.724�10ÿ2

11 1.906�10ÿ2 30 2.757�10ÿ2

12 ÿ8.567�10ÿ3 31 4.613�10ÿ2

13 1.857�10ÿ2 32 7.728�10ÿ3

14 1.629�10ÿ2 33 ÿ1.166�10ÿ2

15 3.234�10ÿ3 34 1.900�10ÿ2

16 1.966�10ÿ2 35 1.489�10ÿ2

17 2.695�10ÿ2 36 1.481�10ÿ2

18 1.544�10ÿ2 37 2.692�10ÿ2

19 ÿ7.768�10ÿ4 38 2.614�10ÿ2
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The ®rst row of results in Tables 7, 8 and 10 shows the

number of iteration and computation time for fully ¯ow-

speci®ed problem using mesh partitioning diakoptics, nodal

partitioning diakoptics and mesh partitioning respectively,

applied to the large network COMP. The number of itera-

tions were the same for each method (24 iterations) but in

terms of computation time per iteration, both mesh and

nodal partitioning diakoptics were much faster than mesh

partitioning. Computation time per iteration for mesh par-

titioning diakoptics was less than 12% and nodal partition-

ing diakoptics about 40% of that for mesh partitioning.

Results for mixed speci®cation also indicate that partition-

ing diakoptics is more superior in ef®ciency than the con-

ventional partitioning methods (See Figs. 9 and 10).

The most time-consuming process in computation is

matrix inversion. The larger the matrix the longer is the

time required for inversion. Since diakoptics tears a given

network into smaller units, the matrices that result have a

smaller dimension than those in the untorn network.

Table 7

Mixed specification simulations for network COMP (mesh partitioning

diakoptics)

No. of pressure

specified nodes

No. of

iterations

Computation

time (s)

Computation time

per iteration (s)

0 24 0.27344 0.01139

1 24 0.49609 0.02067

2 24 0.54688 0.02279

3 23 0.49609 0.02157

4 24 0.49219 0.02051

5 23 0.49219 0.02140

6 24 0.49609 0.02067

7 23 0.49609 0.02157

8 23 0.49219 0.02140

9 22 0.49219 0.02237

10 22 0.49219 0.02237

11 22 0.49609 0.02255

12 21 0.49609 0.02362

13 21 0.49219 0.02344

14 21 0.49219 0.02344

15 21 0.49219 0.02344

16 21 0.49609 0.02362

17 21 0.49609 0.02362

18 21 0.44141 0.02102

19 21 0.49619 0.02344

20 20 0.44141 0.02207

21 2 0.10938 0.05469

Table 8

Mixed specification simulations for network COMP (nodal partitioning

diakoptics)

No. of pressure

specified nodes

No. of

iterations

Computation

time (s)

Computation time

per iteration (s)

0 24 0.93359 0.03890

1 24 0.93359 0.03890

2 24 0.87891 0.03662

3 24 0.82422 0.03434

4 24 0.82422 0.03434

5 22 0.71484 0.03249

6 22 0.71484 0.03249

7 22 0.71484 0.03249

8 22 0.71484 0.03249

9 22 0.71484 0.03249

10 22 0.71484 0.03249

11 22 0.65625 0.02983

12 22 0.66016 0.03000

13 21 0.65625 0.03125

14 21 0.71484 0.03404

15 21 0.71484 0.03404

16 21 0.76953 0.03664

17 21 0.76953 0.03664

18 19 0.71484 0.03762

19 19 0.76953 0.04050

20 18 0.71484 0.03971

21 2 0.16406 0.08203

Table 9

Mixed specification simulations for network SIMP using program PIPE

(mesh partitioning)

No. of pressure

specified nodes

No. of

iterations

Computation

time (s)

Computation time

per iteration (s)

0 22 0.10938 0.00497

1 22 0.10938 0.00497

2 22 0.16406 0.00746

3 21 0.10938 0.00521

4 21 0.10938 0.00521

5 20 0.10938 0.00547

6 21 0.10938 0.00521

7 19 0.10938 0.00576

8 2 0.05469 0.02735

Table 10

Mixed specification simulations for network COMP using program PIPE

(mesh partitioning)

No. of pressure

specified nodes

No. of

iterations

Computation

time (s)

Computation time

per iteration (s)

0 24 2.30469 0.09603

1 24 2.36328 0.09847

2 24 2.30859 0.09619

3 23 2.25391 0.09800

4 24 2.36328 0.09847

5 23 2.25000 0.09783

6 24 2.36328 0.09470

7 23 2.36328 0.10275

8 23 2.36328 0.10275

9 22 2.25000 0.10227

10 22 2.30469 0.10476

11 22 2.30469 0.10476

12 21 2.25391 0.10733

13 21 2.30469 0.10975

14 21 2.30859 0.10993

15 21 2.41797 0.11514

16 21 2.47266 0.11775

17 21 2.52734 0.12035

18 21 2.58203 0.12295

19 21 2.69141 0.12816

20 20 2.64063 0.13053

21 2 0.38672 0.19336
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Accordingly their inversion is faster than those in the untorn

network.

Between mesh and nodal partitioning diakoptics the

former seems more ef®cient than the latter. A closer exam-

ination of the way network COMP is torn reveals that

subnetwork 2 in the torn con®guration for nodal diakoptics,

having 30 branches and 18 nodes, is considerably larger than

the subnetworks in the torn con®guration for mesh diakop-

tics. Consequently the matrices to be inverted are larger than

those involved in mesh diakoptics. Since there is usually

more than one way of tearing a given network, nodal

partitioning diakoptics can be more ef®cient if network

Fig. 9. Graph of computation time per iteration against number of pressure specified nodes for network SIMP.

Fig. 10. Graph of computation time per iteration against number of pressure specified nodes for network COMP.
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COMP is torn into subnetworks that are comparable in size,

so that the matrices to be inverted would have a smaller

dimension. Table 11 gives the results of mixed speci®cation

simulations using nodal partitioning diakoptics applied to

network COMP, but with the network being torn as in

Fig. 11 into two subnetworks of comparable size. Fig. 12

is a plot of computation time per iteration against number of

pressure-speci®ed nodes using mesh partitioning diakoptics

applied to the original torn con®guration as in Fig. 7, nodal

partitioning diakoptics applied to the original torn con®g-

uration as in Fig. 8 and partitioning diakoptics applied to the

new torn con®guration as in Fig. 11. These results show that

nodal partitioning diakoptics applied to the new torn con-

®guration gives the fastest computation time. Therefore,

whether mesh or nodal partitioning diakoptics is more

ef®cient depends on how the network is torn for each

method. Comparing the convergence time required for

diakoptics in the present work with that in the literature

[8], it appears that the computation time is much shorter in

the present work. However, convergence time in this

instance does not form a valid basis for comparison. This

is because in the program in Ref. [8] direct access ®le was

used to store information pertaining to each subnetwork. At

any time, only the required subnetwork's information was

read. Thus the program involved a lot of input/output, which

took up a lot of time. With improved technology, however,

storage does not pose a great problem nowadays. Therefore,

the use of the direct access ®le is discarded in the present

study.

5. Conclusion

Partitioning diakoptics has been found to be more ef®-

cient than conventional partitioning methods in solving

mixed speci®cations problems in ¯uid pipe networks, by

reducing computation time signi®cantly especially when the

given network is very large. This is due to tearing of the

parent network into smaller subnetworks in the diakoptics

approach, resulting in matrices of smaller dimension which

can be more easily inverted. Whether mesh or nodal parti-

Table 11

Mixed specification simulations for network COMP (nodal partitioning

diakoptics on new torn configuration as in Fig. 11)

No. of pressure

specutationified

nodes

No. of

iterations

Computation

time (s)

Computation time

per iteration (s)

0 24 0.43750 0.01823

1 24 0.44141 0.01839

2 24 0.44141 0.01839

3 24 0.44141 0.01839

4 24 0.38672 0.01611

5 24 0.44141 0.01839

6 24 0.38672 0.01611

7 24 0.38281 0.01595

8 24 0.38281 0.01595

9 24 0.38672 0.01611

10 23 0.38281 0.01664

11 22 0.38672 0.01758

12 23 0.38672 0.01681

13 22 0.33203 0.01509

14 22 0.32813 0.01491

15 22 0.38281 0.01740

16 22 0.38281 0.01740

17 21 0.32813 0.01563

18 21 0.38672 0.01842

19 19 0.38672 0.02035

20 19 0.38281 0.02015

21 2 0.05469 0.02934

Fig. 11. New torn configuration of Network COMP cut by nodal diakoptics.
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tioning diakoptics is more ef®cient depends on how the

network is torn for each method.

6. List of Notation

A Branch-node incidence matrix of a network;

Transformation tensor used in nodal partitioning

diakoptics

B Node-to-datum path matrix.

C Branch-mesh incidence matrix of a network;

Transformation tensor used in mesh partitioning

diakoptics

D Diameter of a pipe

I Contravariant tensor for flow due to external

input±output on a branch of path; Nodal flow

i Contravariant tensor for flow due to other causes

on a branch or path; Mesh flow

J Contravariant tensor for total flow on a branch

or path, in primitive framework, J�I�i

L Length of pipe

�P Pressure drop across a pipe, which is equivalent

to V in the matrix analysis

Q Volumetric flow rate through a pipe, which is

equivalent to J in the matrix analysis

U Identity matrix

V Covariant tensor for total pressure, in primitive

framework

Y Contravariant tensor for admittance, used in the

nodal approach

Z Covariant tensor for impedance, used in the

mesh approach

6.1. Greek symbols

� Ratio of circumference to diameter of a circle

� Density of fluid

�f Fanning friction factor

6.2. Index nomenclature

b Index used in tensor form, indicating the tensor

to be in primitive framework

c Index used in tensor form, indicating the tensor

to be in closed path framework

L Index used for matrix form, indicating that the

matrix involves the link branches

o Index used in tensor form, indicating the tensor

to be in open framework

p Index used in tensor form, indicating the tensor

to be in torn framework

R Index used in matrix form, indicating that the

matrix pertains to the removed subnetwork

s Index used in tensor form, indicating the tensor

to be in orthogonal framework

T Index used in matrix form, indicating that the

matrix involves the tree branches

1 Index used in matrix form, indicating that the

matrix pertains to subnetwork 1 only

2 Index used in matrix form, indicating that the

matrix pertains to subnetwork 2 only

3 Index used in matrix form, indicating that the

matrix pertains to subnetwork 1 and the removed

subnetwork

Fig. 12. Graph of computation time per iteration against number of pressure specified nodes for network COMP.
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4 Index used in matrix form, indicating that the

matrix pertains to subnetwork 2 and the removed

subnetwork

1f Index used in matrix form, indicating that the

matrix pertains to subnetwork 1 and the in the

flow-specified framework

1p Index used in matrix form, indicating that the

matrix pertains to subnetwork 1 and in the

pressure-specified framework

2f Index used in matrix form, indicating that the

matrix pertains to subnetwork 2 and in the flow-

specified framework

2p Index used in matrix form, indicating that the

matrix pertains to subnetwork 2 and in the

pressure-specified framework

Rf Index used in matrix form, indicating that the

matrix pertains to the removed subnetwork 1 and

in the flow-specified framework

Rp Index used in matrix form, indicating that the

matrix pertains to the removed subnetwork and

in the pressure-specified framework

*

Index used in matrix form, indicating that the

matrix pertains to the torn framework

6.3. Matrix notation

�M Transpose of matrix M
Mÿ1 Inverse of matrix M
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